Abstract

Vertex-centric graph processing is employed by many popular algorithms (e.g., PageRank) due to its simplicity and efficient use of asynchronous parallelism. The high compute power provided by SIMT architecture presents an opportunity for accelerating these algorithms using GPUs. Prior works of graph processing on a GPU employ Compressed Sparse Row (CSR) form for its space-efficiency; however, CSR suffers from irregular memory accesses and GPU underutilization that limit its performance. In this paper, we present CuSha, a CUDA-based graph processing framework that overcomes the above obstacle via use of two novel graph representations: G-Shards and Concatenated Windows (CW). G-Shards uses a concept recently introduced for non-GPU systems that organizes a graph into autonomous sets of ordered edges called shards. CuSha's mapping of GPU hardware resources on to shards allows fully coalesced memory accesses. CW is a novel representation that enhances the use of shards to achieve higher GPU utilization for processing sparse graphs. Finally, CuSha fully utilizes the GPU power by processing multiple shards in parallel on GPU's streaming multiprocessors. For ease of programming, CuSha allows the user to define the vertex-centric computation and plug it into its framework for parallel processing of large graphs. Our experiments show that CuSha provides significant speedups over the state-of-the-art CSR-based virtual warp-centric method for processing graphs on GPUs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.