Abstract

Intellectual property (IP) core based design is an emerging design methodology to deal with increasing chip design complexity. C/C++ based high level synthesis (HLS) is also gaining traction as a design methodology to deal with increasing design complexity. In the work presented here, we present a design methodology that combines these two individual methodologies and is therefore more powerful. We discuss our proposed methodology in the context of supporting efficient hardware synthesis of a class of mathematical functions without altering original C/C++ source code. Additionally, we also discuss and propose methods to integrate legacy IP cores in existing HLS flows. Relying on concepts from the domains of program recognition and optimized low level implementations of such arithmetic functions, the described design methodology is a step towards intelligent synthesis where application characteristics are matched with specific architectural resources and relevant IP cores in a transparent manner for improved area-delay results. The combined methodology is more aware of the target hardware architecture than the conventional HLS flow. Implementation results of certain compute kernels from a commercial tool Vivado-HLS as well as proposed flow are also compared to show that proposed flow gives better results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.