Abstract

Most people in the world live in urban areas, and their high population densities, heavy reliance on external sources of food, energy, and water, and disproportionately large waste production result in severe and cumulative negative environmental effects. Integrated study of urban areas requires a system-of-systems analytical framework that includes modeling with social and biophysical data. We describe preliminary work toward an integrated urban food-energy-water systems (FEWS) analysis using co-simulation for assessment of current and future conditions, with an emphasis on local (urban and urban-adjacent) food production. We create a framework to enable simultaneous analyses of climate dynamics, changes in land cover, built forms, energy use, and environmental outcomes associated with a set of drivers of system change related to policy, crop management, technology, social interaction, and market forces affecting food production. The ultimate goal of our research program is to enhance understanding of the urban FEWS nexus so as to improve system function and management, increase resilience, and enhance sustainability. Our approach involves data-driven co-simulation to enable coupling of disparate food, energy and water simulation models across a range of spatial and temporal scales. When complete, these models will quantify energy use and water quality outcomes for current systems, and determine if undesirable environmental effects are decreased and local food supply is increased with different configurations of socioeconomic and biophysical factors in urban and urban-adjacent areas. The effort emphasizes use of open-source simulation models and expert knowledge to guide modeling for individual and combined systems in the urban FEWS nexus.

Highlights

  • Over 55% of people in the world, and 80% of people in the United States, live and work in urban areas [United Nations (UN), 2018]

  • Frameworks emphasizing the biophysical elements of urban FEWS and interactions among them exist, they are difficult to develop and use because these settings are characterized by disconnected processes for production, distribution, consumption, and cycling of food, energy and water [Ramaswami et al, 2017; ACERE (Advisory Committee for Environmental Research and Education), 2018]

  • We present our earliest results for the individual FEWS models we are creating using place-based data for the Des Moines Metropolitan Statistical Area (MSA)

Read more

Summary

Introduction

Over 55% of people in the world, and 80% of people in the United States, live and work in urban areas [United Nations (UN), 2018]. These areas support human interactions and result in innovations such as the sharing economy, renewable energy transitions, and green infrastructure that could lead to increased sustainability [ACERE (Advisory Committee for Environmental Research and Education), 2018]. Frameworks emphasizing the biophysical elements of urban FEWS and interactions among them exist, they are difficult to develop and use because these settings are characterized by disconnected processes for production, distribution, consumption, and cycling of food, energy and water [Ramaswami et al, 2017; ACERE (Advisory Committee for Environmental Research and Education), 2018]. Changes in climate, land use, built forms, and their impacts on other processes are often considered in isolation, even though in reality they are interdependent (Cutter et al, 2014)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call