Abstract

With the deployment of a growing number of smart home IoT devices, privacy leakage has become a growing concern. Prior work on privacy-invasive device localization, classification, and activity identification have proven the existence of various privacy leakage risks in smart home environments. However, they only demonstrate limited threats in real world due to many impractical assumptions, such as having privileged access to the user's home network. In this paper, we identify a new end-to-end attack surface using IoTBeholder, a system that performs device localization, classification, and user activity identification. IoTBeholder can be easily run and replicated on commercial off-the-shelf (COTS) devices such as mobile phones or personal computers, enabling attackers to infer user's habitual behaviors from smart home Wi-Fi traffic alone. We set up a testbed with 23 IoT devices for evaluation in the real world. The result shows that IoTBeholder has good device classification and device activity identification performance. In addition, IoTBeholder can infer the users' habitual behaviors and automation rules with high accuracy and interpretability. It can even accurately predict the users' future actions, highlighting a significant threat to user privacy that IoT vendors and users should highly concern.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.