Abstract
The initiation of replication origin is an extremely important process of DNA replication. The distribution of replication origin regions (ORIs) is the major determinant of the timing of genome replication. Thus, correctly identifying ORIs is crucial to understand DNA replication mechanism. With the avalanche of genome sequences generated in the post-genomic age, it is highly desired to develop computational methods for rapidly, effectively and automatically identifying the ORIs in genome. In this paper, we developed a predictor called iORI-PseKNC for identifying ORIs in Saccharomyces cerevisiae genome. In the predictor, based on the concept of the global and long-range sequence-order effects of DNA sequence, the feature called “pseudo k-tuple nucleotide composition” (PseKNC) was used to encode the DNA sequences by incorporating six local structural properties of 16 dinucleotides. The overall success rate of 83.72% was achieved from the jackknife cross-validation test on an objective benchmark dataset. Comparisons demonstrate that the new predictor is superior to other methods. As a user-friendly web-server, iORI-PseKNC is freely accessible at http://lin.uestc.edu.cn/server/iORI-PseKNC. We hope that iORI-PseKNC will become a useful tool or at least as a complement to existing methods for identifying ORIs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.