Abstract
Ion selective optical sensors are typically interrogated under conditions where the sample concentration is not altered during measurement. We describe here an alternative exhaustive detection mode for ion selective optical sensors. This exhaustive sensor concept is demonstrated with ionophore-based nanooptodes either selective for calcium or the polycationic heparin antidote protamine. In agreement with a theoretical treatment presented here, linear calibration curves were obtained in the exhaustive detection mode instead of the sigmoidal curves for equilibrium-based sensors. The response range can be tuned by adjusting the nanosensor loading. The nanosensors showed average diameters of below 100 nm and the sensor response was found to be dramatically faster than that for film-based optodes. Due to the strong binding affinity of the exhaustive nanosensors, total calcium concentration in human blood plasma was successfully determined. Optical determination of protamine in human blood plasma using the exhaustive nanosensors was attempted, but was found to be less successful.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.