Abstract

AbstractIonomers have been defined as copolymers that have a certain proportion of ionic groups. The ionic groups have a significant effect on the mechanical properties of the copolymers. This is generally due to aggregation of ions in a low dielectric medium. The primary result is to restrict chain motion and raise the glass transition temperature. These attributes have relevance to molecular imprinting, since restricted chain motion should help preserve the integrity of the binding site. The connection between ionomers and molecular imprinting has come from the production of metal ion imprinted resins. Metal ions are used in the production of molecularly imprinted polymer ion exchange resins and ionically permeable membranes. The polymers have applications as separations media, sequestering media and as ion selective sensors. Metal ions are also being used to form imprinted polymers based on metal mediated imprint binding. We have prepared ion exchange resins, selectively permeable polymer membranes, ion selective electrodes and ion selective optical sensors using a modified version of the molecular imprinting technique. The modification is a reduction in the amount of covalent crosslinking used to form the polymers. This reduction may be justified by the presence of residual metal ion crosslinking in the immediate region of the imprinted binding site. The effects of metal ions on the thermal and mechanical properties of the polymers, as well their impact on binding selectivity are critical variables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call