Abstract

Long-wave-sensitive (LWS) cone visual pigments are sensitive to the concentration of chloride ions and show a spectral shift to shorter wavelengths when exposed to low chloride levels. We have used the aspartate-isolated mass receptor potential of the electroretinogram (ERG) to establish whether the spectrally shifted cone pigment is functional. In the goldfish, Carassius auratus, the λ max of the LWS porphyropsin is displaced from about 622 nm to around 606 nm when chloride is replaced by gluconate. The electrical response of the LWS cones (but not MWS cones and rods) is selectively and reversibly abolished by the removal of chloride ions. The effect is concentration dependent and a decrease to half the normal chloride ion concentration is sufficient to cause a decrease in the response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.