Abstract

As the gravity of glycoscience continues to amass, a commensurate demand for rapid, sensitive, and structurally comprehensive glycoanalytical tools has arisen. Among the most elusive but desirable analytical capabilities is the ability to expeditiously and unambiguously detect, distinguish, and resolve carbohydrates that differ only in their constitutional isomerism and/or stereoisomerism. While ion mobility spectrometry (IMS) has proven a highly promising tool for such analyses, the facility of this method to discriminate larger oligosaccharides is still somewhat limited. In an effort to expand the capabilities of IMS to discriminate among carbohydrate isomers, the present investigation was focused on IMS studies of four trisaccharide isomers, four pentasaccharide isomers, and two hexasaccharide isomers, each as group II metal ion adducts and their corresponding gas-phase electron transfer (ET) products. These studies were also evaluated in the context of previously investigated group I metal ion adducts of the same saccharides. The orientationally averaged ion-neutral collisional cross sections (CCSs) of the various carbohydrate/metal ion adducts were found to be dependent on the structures of specific carbohydrate isomers, sensitive to the electronic characteristics of the bound cation, and responsive to the attachment of an additional electron (in the case of divalent metal ion adducts). Overall, these results underscore the utility of metal ions for probing carbohydrate structure in concert with IMS, and the capacity of gas-phase ion chemistry to expand the menu of such probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.