Abstract

Dark current degradation, origins, and annealing behavior after x-ray irradiation are studied in a P-type, hole collecting, backside-illuminated image sensor currently being developed at STMicroelectronics and based on deep-trenched photo-MOS pixels. Different biasing conditions during irradiation, i.e. grounded or biased and sequenced, are compared. The dark current increase with total ionizing dose (TID) and the dark current annealing behavior seem to be driven by the backside interface between the P-epitaxy of the pixels and the ONO stack. Despite still being under development, this pixel architecture already exhibits both very good electro-optical performance and a better radiation hardness than pinned photodiode-based CMOS Image sensors that benefit from the same advanced CIS processing technologies. At high total dose range, the photogate challenges custom Radiation-Hardened-by-Design photodiodes by exhibiting a comparable radiation tolerance while bringing new features such as high-resolution or Correlated Double Sampling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call