Abstract

To find a model that describes the gas diffusion on irradiated polymers (Makrofol KG polycarbonate) the diffusion constants have been measured with argon as diffusion gas. The polymers were irradiated with uranium, gold and lead ions of about 10 MeV/u and ion fluences between 1×10 10 and 4×10 11 ions/ cm 2 . The ion irradiated probes show two quite different dependencies of the diffusion constant on the ion energy loss. These effects are strongly related to the fluence of the irradiation. In case of low ion fluences, the diffusion constant is up to 8 times higher than that of pristine material. In the probes with high ion fluences we observe a decrease of diffusion constant to half the value of the pristine material. To understand the dependence of the diffusion constant on ion fluences we apply a model of compacting. This model describes the compacting ability of shockwaves arising from latent tracks. A track formation model is suggested. When an ion penetrates the foil it creates shockwaves around its path. These shockwaves put compacting forces on earlier created latent tracks in the same foil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call