Abstract
We present accurate ionization potentials (IPs) for small lithium clusters and hydrogenated lithium clusters (n=1-4), computed using coupled-cluster singles and doubles theory augmented with a perturbative correction for connected triple excitations [CCSD(T)] with the correlation-consistent weighted core-valence quadruple-zeta basis set (cc-pwCVQZ). In some cases the full CCSDT method has been used. Comparison of computed binding energies with experiment for the pure cationic lithium clusters reveals excellent agreement, demonstrating that previous discrepancies between computed and experimentally derived atomization energies for the corresponding neutral clusters are due to the use of an inaccurate experimental IP for Li(4). The experimental IP for Li(4) falls 0.43 eV below our theoretical adiabatic value of 4.74 eV, which should be a lower bound to the measured IP. Our recommended zero-point corrected adiabatic IPs for Li, Li(2), Li(3), Li(4), LiH, Li(2)H, Li(3)H, and Li(4)H are 5.39, 5.14, 4.11, 4.74, 7.69, 3.98, 4.69, and 4.05 eV, respectively. Zero-point vibrationally corrected CCSD(T) atomization energies per atom for Li(2) (+), Li(3) (+), Li(4) (+), LiH(+), Li(2)H(+), Li(3)H(+), and Li(4)H(+) are 0.64, 0.96, 0.90, 0.056, 1.62, 1.40, and 1.40 eV, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have