Abstract

We discuss the ionization and fragmentation of isolated monomers and cold clusters of polycyclic aromatic hydrocarbon (PAH) molecules in collisions with keV ions in low or high charge states. With low charge state projectile ions, PAH cluster or monomer targets are thermally excited through electronic stopping processes directly in close peripheral or penetrating collisions while only single or few electrons are removed. With high charge state projectiles, electrons are very effectively removed from both the cluster and the monomer target already at very large distances with very little direct target heating. Singly charged and internally very hot PAH monomers are dominant fragmentation products following collisions between Xe20+ ions and PAH clusters. We suggest that this due to an unusually strong dominance of multiple-ionization over single ionization for PAH clusters interacting with highly charged ions. Here, charge and excitation energy is very rapidly redistributed within the clusters before they Coulomb explode and we suggest that these Coulomb explosions induce strong internal heating in the individual PAH molecules. We thus conclude that PAH cluster fragmentation always dominates strongly for all ionization processes regardless if these are due to interactions with ions in high or low charge states. These findings are discussed in view of simple models for cluster evaporation or single and multiple ionizations of PAH clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.