Abstract
Salt concentration-dependent structure of complex coacervate core micelles (C3Ms), formed by polyether-based block copolyelectrolytes containing cationic ammonium (A) or anionic sulfonate (S) groups in aqueous media, is investigated by light scattering and small-angle X-ray/neutron scattering (SAX/NS). As the salt concentration increases, both a core radius (Rcore) and an aggregation number (Nagg) significantly decrease, but a corona thickness (Lcorona) is nearly unchanged. Larger salt concentrations can lower the interfacial tension between the coacervate cores and aqueous media, resulting in an increased interfacial area per chain and a more relaxed conformation of the core blocks. Based on the structure characterization, the scaling relationship between structure parameters (i.e., Rcore, Nagg, and Lcorona) and salt concentration is obtained and compared to the theoretical description estimated by the free energy balance between the entropic penalty of core stretching and the interfacial energy. We propose that the free energy contribution of the core block stretching is not negligible in C3Ms because of the highly swollen cores caused by water.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have