Abstract

We describe the behavior of the conductivity, viscosity, and vapor pressure of various binary liquid systems in which proton transfer occurs between neat Brönsted acids and bases to form salts with melting points below ambient. Such liquids form an important subgroup of the ionic liquid (IL) class of reaction media and electrolytes on which so much attention is currently being focused. Such "protic ionic liquids" exhibit a wide range of thermal stabilities. We find a simple relation between the limit set by boiling, when the total vapor pressure reaches one atm, and the difference in pK(a) value for the acid and base determined in dilute aqueous solutions. For DeltapK(a) values above 10, the boiling point elevation becomes so high (>300 degrees C) that preemptive decomposition prevents its measurement. The completeness of proton transfer in such cases is suggested by the molten salt-like values of the Walden product, which is used to distinguish good from poor ionic liquids. For the good ionic liquids, the hydrogen bonding of acid molecules to the proton-transfer anion is strong enough that boiling points, but not melting points, may maximize at the hydrogen-bonded dianion composition. High boiling liquids of this type constitute an interesting class of high-temperature protonic acid that may have high-temperature fuel cell applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.