Abstract
The relative low stability, reusability and activity of enzymes made the industrial production of vitamin E succinate (VES) can only be performed with complex processes and high cost using chemical methods. To address these issues, in the present study, an ionic liquids (ILs) modification strategy was developed to improve the activity and stability of lipases in VES synthesis. The results showed that the [1-butyl-3-methyl imidazole] [N-acetyl-l-proline] ILs modified Candida rugosa lipase (CRL) has the highest modification degree (48.28%), activity (774 U g-1 ), thermostability and solvent tolerance in three selected modifiers. Additionally, after reaction condition optimization, the highest yield of VES can be improved to 95.18% at 45 °C for 15 h, which was significantly improved compared to some previous studies. In the present study, a high-efficiency VES synthesis strategy was successfully developed via modification of lipase. Moreover, the mechanism by which ILs modification can enhance the activity and stability of lipase was investigated via both experimental and computational-aided methods. Molecular dynamics simulation suggested that ILs modification changed the geometry of Phe344 from flat to upright, which significantly reshaped and enhanced the size of substrate binding pocket of CRL. It is also agreement with our circular dichroism and fluorescence spectroscopy results, which suggested that the modification changed the secondary structure of CRL to a certain extent. The larger pocket also endowed the suitable binding pose of succinate, which made the hydrogen bonds between succinate and active site Ser209 become stronger, and thus improving the yield of VES. © 2023 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.