Abstract

Clay material plays an important role in the transport and retention of many compounds in the soil, therefore, clay based sorbents are promising alternatives for selective sorption of organic pollutants. In the present work, different chain length ionic liquids (ILs) namely, 1-methyl-3-octyl-imidazolium bromide, 1-methyl-3-undecyl-imidazolium bromide and 1-methyl-3-octadecyl-imidazolium bromide were intercalated in the galleries of montmorillonite (MMT) clay. Then, this novel nanofiller surface was utilized in micro extraction of estrogenic hormones for the first time. A fast procedure where sonication-assisted emulsification microextraction combined with vortex assisted micro-solid phase extraction (μ-SPE) was developed for the LC–MS/MS analysis of estrone (E1), 17β-estradiol (E2), estriol (E3) and ethynylestradiol (EE2). The parameters related to the μ-SPE procedure namely; pH, sorbent amount, extraction solvent type and volume, sonication and vortex time, sample volume and salt effect on the extraction efficiency were screened by applying Plackett–Burmann design. The selected parameters were then optimized by using Box–Behnken design. The method was validated for the determination of estrogenic hormone residues in river water samples. Linear calibration plots were obtained for all hormones whose regression coefficients were larger than 0.98. RSD values were found less than 10% for three levels of concentration. LOD levels were calculated as; 0.012, 0.062, 0.018 and 0.693ngL−1 for E1, E2, E3 and EE2, respectively. Recovery values were calculated in the range of 86.9–97.7%. Considering large sample volumes required for attaining low limits of these hormones, present method provides an ease for analyst as 10mL of the sample is adequate for achieving the same sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.