Abstract

Polycyclic musks (PCMs) have recently received growing attention as emerging contaminants because of their bioaccumulation and potential ecotoxicological effects. Herein, an effective method for the determination of five PCMs in aqueous samples is presented. Reduced graphene oxide-derivatized silica (rGO@silica) particles were prepared from graphene oxide and aminosilica microparticles and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. PCMs were preconcentrated using rGO@silica as the solid-phase extraction sorbent and quantified by gas chromatography–tandem mass spectrometry. Several experimental parameters, such as eluent, elution volume, sorbent amount, pH, and sample volume were optimized. The correlation coefficient (R) ranged from 0.9958 to 0.9992, while the limits of detection and quantitation for the five PCMs were 0.3–0.8 ng/L and 1.1–2.1 ng/L, respectively. Satisfactory recoveries were obtained for tap water (86.6–105.9%) and river water samples (82.9–107.1%), with relative standard deviations <10% under optimal conditions. The developed method was applied to analyze PCMs in tap and river water samples from Beijing, China. Galaxolide (HHCB) and tonalide (AHTN) were the main PCM components detected in one river water sample at concentrations of 18.7 for HHCB, and 11.7 ng/L for AHTN.

Highlights

  • Personal care products (PCPs) are an important class of emerging pollutants that have raised significant concerns because of their bioaccumulation ability and potential adverse effects on the ecological environment [1]

  • The results showed that no Polycyclic musks (PCMs) were detected in the tap water from Beijing, while HHCB

  • A simple and novel method was developed for the enrichment and determination of five PCMs in environmental water samples

Read more

Summary

Introduction

Personal care products (PCPs) are an important class of emerging pollutants that have raised significant concerns because of their bioaccumulation ability and potential adverse effects on the ecological environment [1]. PCMs can enter the water supply in effluents from municipal wastewater treatment plants. Because of their extensive use and increasing consumption worldwide in recent years, PCMs are ubiquitously detected in water environments [3,4,5,6] and even aquatic organisms [7]. PCMs have been found to bioaccumulate, with some studies suggesting that they could have ecotoxicological effects on specific organisms and cause endocrine disruption in humans [8,9,10,11].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call