Abstract

Voltage control magnetism is one of the most energy efficient pathway towards magnetoelectric (ME) device. Ionic liquid gating (ILG) method has already shown impressive manipulation power at the IL/electrode interface to influence the structure, orbital as well as spin of the electrode materials. As key material in anisotropy magnetoresistance sensor and spin valve heterostructure, the permalloy Ni0.81Fe0.19 was utilized as the electrode to investigate the ILG induced magnetic anisotropy change. In this work, we realized magnetic anisotropy control in Au/[DEME]+[TFSI]-/Ni0.81Fe0.19 (2.5 nm)/Ta heterostructure via ILG caused electrostatic doping. This is evidenced in situ reversible ferromagnetic field (Hr) shift with electron spin resonance (ESR) spectrometer. Aiming at the question whether the charge accumulation at the ionic liquid interface is the main control mechanism at low voltage, we carefully tested the relationship between the change of resonance field and the amount of surface charge. It was found that these two had a good linear relationship between −1 V and +1 V. Defining the linear parameter as A whose value is 28.7 mT m2/Col. Unlike previously reported chemical regulation of Co, this article used ionic liquids to physically regulate NiFe, which has not been studied in the previous ionic liquid regulation. And NiFe has a narrower resonance line width for easy reference to microwave devices. In addition, It also has a stronger ferromagnetic signal than Co, which can be more easily detected as a sensor device. Therefore, this system is more promising. The ILG control NiFe may lead to a new kind of magnetoelectric sensor devices and path a new way to low energy consumption spintronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call