Abstract

Ionic liquid 1‐allyl‐3‐methyl‐imidazolium chloride (AMICl) is used to fine‐tune the surface properties of graphene oxide (GO) sheets for fabricating ionic liquid functionalized GO (GO‐IL)/styrene‐butadiene rubber (SBR) nanocomposites. The morphology and structure of GO‐IL are characterized using atomic force microscope, X‐ray diffraction, differential scanning calorimetry, X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV‐vis spectra and Raman spectra. The interaction between GO and AMICl molecules as well as the effects of GO‐IL on the mechanical properties, thermal conductivity and solvent resistance of SBR are thoroughly studied. It is found that AMICl molecules can interact with GO via the combination of hydrogen bond and cation–π interaction. GO‐IL can be well‐dispersed in the SBR matrix, as confirmed by X‐ray diffraction and scanning electron microscope. Therefore, the SBR nanocomposites incorporating GO‐IL exhibit greatly enhanced performance. The tensile strength, tear strength, thermal conductivity and solvent resistance of GO‐IL/SBR nanocomposite with 5 parts per hundred rubber GO‐IL are increased by 505, 362, 34 and 31%, respectively, compared with neat SBR. This method provides a new insight into the fabrication of multifunctional GO‐based rubber composites. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.