Abstract

The present paper provides a modern route to reinforce styrene butadiene rubber (SBR) nanocomposites by the proper utilization of sol–gel synthesized nanotitanium dioxide (TiO2). In order to achieve proper dispersion within the SBR matrix, the surface of nano-TiO2 is modified by cationic surfactants cetyltrimethylammonium bromide (CTAB) and tetraethylammonium bromide (TEAB). The surface modification of nano-TiO2 is characterized by Fourier transform infrared spectra and field emission scanning electron microscopy. The result reveals that after surface modification, sol–gel derived nano-TiO2 is much more efficient to improve the cure, mechanical and thermal properties of SBR nanocomposites in comparison with unmodified nano-TiO2. This is due to the excellent dispersion of modified nano-TiO2 within the SBR matrix, leading to the good compatibility between SBR and nano-TiO2, as confirmed from morphological analysis. Further, CTAB-treated nano-TiO2 has superior ability to enhance the resulting properties of SBR nanocomposites in comparison with either untreated or TEAB-treated nano-TiO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call