Abstract

Serious open-circuit voltage (Voc) loss originating from nonradiative recombination and mismatch energy level at TiO2/perovskite buried interface dramatically limits the photovoltaic performance of all-inorganic CsPbIxBr3-x (x = 1, 2) perovskite solar cells (PSCs) fabricated through low-temperature methods. Here, an ionic liquid (IL) bridge is constructed by introducing 1-butyl-3-methylimidazolium acetate (BMIMAc) IL to treat the TiO2/perovskite buried interface, bilaterally passivate defects and modulate energy alignment. Therefore, the Voc of all-inorganic CsPbIBr2 PSCs modified by BMIMAc (Target-1) significantly increases by 148 mV (from 1.213 to 1.361 V), resulting in the efficiency increasing to 10.30% from 7.87%. Unsealed Target-1 PSCs show outstanding long-term and thermal stability. During the accelerated degradation process (85 °C, RH: 50∼60%), the Target-1 PSCs achieve a champion PCE of 11.94% with a remarkable Voc of 1.403 V, while the control PSC yields a promising PCE of 10.18% with a Voc of 1.319 V. In particular, the Voc of 1.403 V is the highest Voc reported so far in carbon-electrode-based CsPbIBr2 PSCs. Moreover, this strategy enables the modified all-inorganic CsPbI2Br PSCs to achieve a Voc of 1.295 V and a champion efficiency of 15.20%, which is close to the reported highest PCE of 15.48% for all-inorganic CsPbI2Br PSCs prepared by a low-temperature process. This study provides a simple BMIMAc IL bridge to assist bifacial defect passivation and elevate the photovoltaic performance of all-inorganic CsPbIxBr3-x (x = 1, 2) PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.