Abstract

Gel-type polymer electrolytes are formed by immobilizing a solution of lithium N,N-bis(trifluoromethanesulfonyl)imide (LiTFSI) in N-n-butyl-N-ethylpyrrolidinium N,N-bis(trifluoromethanesulfonyl)imide (Py₂₄TFSI) ionic liquid (IL) with added mixtures of organic solvents, such as ethylene, propylene and dimethyl carbonates (EC, PC, and DMC, respectively), into a poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) matrix, and their properties investigated. The addition of the organic solvent mixtures results in an improvement of the ionic conductivity and in the stabilization of the interface with the lithium electrode. Conductivity values in the range of 10⁻³-10⁻² S cm⁻¹ are obtained in a wide temperature range. These unique properties allow the effective use of these membranes as electrolytes for the development of advanced polymer batteries based on a lithium metal anode and an olivine-type lithium iron phosphate cathode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call