Abstract

The addition of actively transported sugars to the solution bathing the mucosal surface of an in vitro preparation of distal rabbit ileum results in a rapid increase in the transmural potential difference, the short-circuit current, and the rate of active Na transport from mucosa to serosa. These effects are dependent upon the active transport of the sugar per se and are independent of the metabolic fate of the transported sugar. Furthermore, they are inhibited both by low concentrations of phlorizin in the mucosal solution and by low concentrations of ouabain in the serosal solution. The increase in the short-circuit current, DeltaI(sc), requires the presence of Na in the perfusion medium and its magnitude is a linear function of the Na concentration. On the other hand, DeltaI(sc) is a saturable function of the mucosal sugar concentration which is consistent with Michaelis-Menten kinetics suggesting that the increase in active Na transport is stoichiometrically related to the rate of active sugar transport. An interpretation of these findings in terms of a hypothetical model for intestinal Na and sugar transport is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.