Abstract

Polymer electrolytes show promise as alternatives to conventional electrolytes in energy storage and conversion devices but have been limited due to their inverse correlation between ionic conductivity and modulus. In this study, we examine surface morphology, linear viscoelastic, dielectric and diffusive properties of molecular ionic composites (MICs), materials produced through the combination of a rigid and charged double helical polymer, poly(2,2′-disulfonyl-4,4′-benzidine terephthalamide) (PBDT), and ionic liquids (ILs). To probe temperature extremes, we incorporate a non-crystallizable IL to allow measurements from −90 to 200 °C. As we increase the PBDT weight percentage, shear moduli increase and do not decay up to 200 °C while maintaining room temperature ionic conductivity within a factor of 2 of the neat IL. We connect diffusion coefficients of IL ions with ionic conductivity through the Haven ratio across a wide temperature range and analyze trends in ion transport based on a relatively high an...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call