Abstract

The aim of this study was to compare the effects of a black copper cement (BCC), an established restorative material (a conventional glass ionomer cement) and two temporary restorative materials (a zinc phosphate and a zinc polycarboxylate cement) on the growth of Streptococcus mutans in vitro, and to correlate bacterial growth with ion release from each material. Test specimens were eluted in either 0.1 M lactic acid, pH 4, or 0.1 M sodium chloride, pH 7. At 2 days, 7 days, 28 days and 6 months, eluates were inoculated with S. mutans and bacterial growth was recorded. Metal ion (Cu<sup>2+</sup>, Zn<sup>2+ </sup>and Mg<sup>2+</sup>) and fluoride release were measured. At most immersion times, the different materials had a statistically significant inhibitory effect on bacterial growth compared to the respective control, at both pH levels. The inhibitory effect decreased with time and in most cases was associated with high levels of ion release at the beginning of the experimental period, followed by significantly lower levels. For BCC, there were statistically significant relationships between the median rates of growth of S. mutans in the presence of BCC eluates and the median values for release of copper and zinc, although not magnesium. Of the different materials, BCC demonstrated greatest antibacterial activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.