Abstract

Understanding ion transport in membrane materials is key to engineering and development of desalination and water purification technologies as well as electro-membrane applications. To date, modeling of ion transport has mainly relied on mean-field approaches, originally intended for weak inter-ionic interactions, i.e., high reduced temperature T*. This condition is violated in many membranes, which could explain disagreement between predicted trends and experiments. The paper highlights observed discrepancies and develops a new approach based on the concept of ion association, more adequate in the low-T⁎ limit. The new model addresses ion binding and mobility consistently within the same physical picture, applied to different types of single and mixed salts. The resulting relations show a significantly weaker connection between ion partitioning and permeability than the standard ones. Estimates using primitive model (PM) of ions in a homogeneous dielectric suggest that non-PM mechanisms, originating from the molecular structure of the ion-solvating environment, might enhance ion association in membranes. PM analysis also predicts that ion solvation and association must be rigidly related, yet non-PM effects may decouple these phenomena and allow a crossover to non-trivial regimes consistent with experiments and simulations. Despite the crude nature of the presented approach and some questions remaining open, it appears to explain most available experimental data and presents a step towards predictive modeling of ion-selective membrane separations in water-, environment- and energy-related applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call