Abstract

Ion trapping using radio-frequency (RF) devices has been widely used in mass spectrometry (MS). The pseudopotential well (PW) model enables the use of a pseudopotential depth, D, to evaluate the ion trapping capability of the RF devices in the pure electric field. It remains unclear how gas pressures regulate the ion trapping and D. Here, we calculated the D of a linear ion trap (LIT) from 1 mTorr to 2 Torr, a pressure range critical for the operation of the RF devices, through ion cloud simulations. Compared with the case of pure electric field, ion-neutral collision effects at pressures of 1 to 100 mTorr were beneficial for the ion trapping and revealed an optimal trapping depth, D, at around 10 mTorr. We explained the mechanism and validated the observation via ion trapping experiments performed in a home-made dual LIT mass spectrometer. We also showed that near the stability boundary, the RF heating became comparable with the D, which led to the decrement of ion trapping capability characterized by the available D.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.