Abstract
Ion mobility, phase transitions, structure, and conductivity in the K0.7M0.3SbF4 (M=Rb, NH4) compounds were studied by NMR spectroscopy, DSC, X-ray, and conductivity measurements. The predominant form in the ion motions resulting from the phase transition of high modification was diffusion of fluoride and ammonium ions above 450K. The high–temperature phases of K0.7M0.3SbF4 (M=Rb, NH4) are superionic, while their conductivity attains the values of ~10−2–10−4S/cm at 450–500K. The structures of α– and β–modifications of the K0.7Rb0.3SbF4 are monoclinic (space group P21/m). The main structural units in them are statistically substituting each other K+ and Rb+ cations and complex [SbF4]−∞1 anions linked into zigzag-like chains by bridge fluorine atoms. The nearest surrounding of each antimony atom contains five fluorine atoms, so that the antimony coordination polyhedron can be described, taking into account the lone electron pair, as a distorted SbF5E octahedron (ψ-octahedron).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Solid State Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.