Abstract

The microstructural evolutions of Ti4AlN3 induced by 1MeV Au+ ions irradiation over a wide fluence range were investigated by transmission electron microscopy (TEM). The high-resolution TEM (HRTEM) images and selected area electron diffraction (SAED) results clearly reveal the process of irradiation-induced partial phase transitions from the original hexagonal-close-packed (hcp) structure into face-centered-cubic (fcc) structure, with the formation of stacking faults. The mechanism for the phase transitions of Ti4AlN3 is proposed based on the phase contrast images and electron diffraction pattern (EDP) simulation. The remained hcp structure without amorphization after high fluences irradiation suggest that Ti4AlN3 exhibits excellent radiation tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.