Abstract

Phase transitions induced in hcp Mn+1AXn phases (Ti2AlN, Ti2AlC, and Ti4AlN3) by 1 MeV Au+ ion irradiation were investigated, over a series of ion fluences ranging from 1 × 1014 to 2 × 1016 ions cm−2, by transmission electron microscopy (TEM) and synchrotron grazing incidence X-ray diffraction (GIXRD). Irradiation-induced structural evolutions were observed using high-resolution TEM (HRTEM) imaging and selected area electron diffraction (SAED). Based on phase contrast imaging and electron diffraction pattern (EDP) simulations, the atomic-scale mechanisms for the phase transitions were determined. Transformations of the initial hcp phases to the intermediate γ-phases and fcc phases were driven by the formation of Ti/Al antisite defects and extended stacking faults induced by ion irradiation. By comparing the transformation behavior of Ti2AlN with that of Ti2AlC and Ti4AlN3 under the same irradiation conditions, using both the experimental data and first-principles calculations, the role of the X and n parameters in the radiation responses of Mn+1AXn phases were elucidated. The susceptibilities of materials in this Ti-Al-X (X = C, N) system to irradiation-induced phase transitions were determined with respect to the bonding characteristics and compositions of these MAX phases. Ti2AlC is slightly less susceptible to the radiation-induced phase transformation than Ti2AlN, which is attributed to the stronger Ti-Al bond covalency in Ti2AlN. Ti4AlN3 is more resistant to radiation-induced phase transformations than is Ti2AlN, due to the lower Al content and lower anion vacancy ratio in the irradiation-induced solid solution phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.