Abstract

In this article we describe a newly proposed and consistent damage model in Monte Carlo simulation for the accurate prediction of a three-dimensional as-implanted impurity profile and point defect profile induced by ion implantation in (100) crystal silicon. An empirical electronic energy loss model for B, BF2, As, P, and Si self-implants over a wide energy range has been proposed for silicon-based semiconductor device technology and development. Our model shows very good agreement with secondary ion mass spectrometry data over a wide energy range. For damage accumulation, we have considered the self-annealing effects by introducing our proposed nonlinear recombination probability function of each point defect for computational efficiency. For the damage profiles, we compared the published Rutherford backscattering spectrometry (RBS)/channeling data with our results of phosphorus implants. Our damage model shows very reasonable agreements with the RBS/channeling experiments for phosphorus implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.