Abstract

Herein, molecular strings of ions built along charge-transporting channels are shown to dramatically increase photocurrents and enable charge transport over long distances, thus confirming the existence and significance of ion-gated photosystems. For their synthesis, ordered and oriented stacks of naphthalenediimides were grown on indium tin oxide by ring-opening disulfide-exchange polymerization. To these charge-transporting channels, coaxial strings of anions or cations-fixed, mobile, complete, partial, pure, or mixed-were added by orthogonal hydrazone exchange. The presence of partially protonated carboxylates was found to most significantly increase activity, implying that they both attract holes and repel electrons, that is, facilitate photoinduced charge separation and hinder charge recombination at the same time. As a result of this quite remarkable situation, photocurrents increased rather than decreased with increasing charge stabilization on their "stepping stones." The presence of mobile anions facilitated long-distance charge transport through thick films. Turned off by inhibited anion mobility, that is, proton hopping, hole/proton antiport is identified to account for long-distance charge transport in ion-gated photosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.