Abstract
In this article, we report values of ion energy and angular distributions measured at the grounded electrode of an inductively coupled discharge in chlorine gas. The inductive rf drive in our cell produced high plasma densities (1011/cm3 electron densities) and stable plasma potentials. As a result, ion energy distributions typically consisted of a single peak well separated from zero energy. Mean ion energy varied inversely with pressure, decreasing from 13 to 9 eV as the discharge pressure increased from 20 to 60 mTorr. Half-widths of the ion angular distributions in these experiments varied from 6° to 7.5°, corresponding to transverse energies from 0.13 to 0.21 eV. During the course of the experiment, ion energies gradually decreased, probably due to the buildup of contaminants on the chamber walls. Cell wall temperature also was an important variable, with ion fluxes to the lower electrode increasing and the ion angular distribution narrowing as the cell temperature increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.