Abstract
Plasma energization and thermalization in magnetic reconnection is an important topic in astrophysical studies. We select two magnetic reconnection exhausts encountered by Solar Orbiter and analyze the associated ion heating in the kinetic regime. Both cases feature asymmetric plasma merging in the exhaust and anisotropic heating. For a quantitative investigation of the associated complex velocity-space structures, we adopt a three-dimensional Hermite representation of the proton velocity distribution function to produce the distribution of Hermite moments. We also derive the enstrophy and Hermite spectra to analyze the free energy conversion and transfer in phase space. We find a depletion of Hermite power at small m (corresponding to large-scale structures in velocity space) inside the reconnection exhaust region, concurrent with enhanced proton temperature and decreased enstrophy. Furthermore, the slopes of the 1D time-averaged parallel Hermite spectra are lower inside the exhaust and consistent with the effect of phase mixing that creates small fluctuations in velocity space. These fluctuations store free energy at higher m and are smoothed by weak collisionality, leading to irreversible thermalization. We also suggest that the perpendicular heating may happen via perpendicular phase mixing resulting from finite Larmor radius effects around the exhaust boundary.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.