Abstract

A next generation ion source suitable for both high resolution focused ion beam milling and imaging applications is currently being developed. The new ion source relies on a method of which positively charged ions are extracted from a miniaturized gas chamber where neutral gas atoms become ionized by direct electron impact. The use of a very small gas chamber and a very narrow electron beam (<100 nm) allows for a very small ionization volume, which, in turn, yields a small virtual source size and low energy spread. The authors estimate that using a high current density electron beam from a Schottky electron gun the reduced brightness of this source can exceed that of the Gallium Liquid Metal Ion Sources and the energy spread can be well below 1 eV at an optimal gas pressure and gas chamber spacing while producing more than 1 nA of usable ion beam current. In a proof-of-concept study, the authors have produced ions of helium, argon, xenon, and air from a prototype gas chamber using an electron probe inside a scanning electron microscope. Using micro-channel plates and a phosphor screen, ion beam patterns have been acquired demonstrating that a beam of ions can be produced from a miniaturized gas chamber. The authors have measured up to several hundreds of pico-amperes of ion current in a Faraday cup using an input electron probe current of ∼14 nA with 1 keV incident energy. The authors have also verified that the ion beam current is dependent on the incident electron beam energy, gas chamber bias voltage, and the gas pressure inside the ionization chamber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.