Abstract

Noble metal nanoparticles strongly adhered to dielectric matrices have been extensively studied because of their potential applications in plasmonic devices based on tunable localized surface plasmon (LSP) excitation. Compared with conventional synthesis methods, the noble metal nanoparticles formed by ion-beam irradiation draw significant interest in recent years because a single layer dispersion of nanoparticles strongly bonded on the dielectric substrate can be obtained. In this paper, important phenomena related to ion-beam surface nanostructuring including ion-induced reshaping of metal nanoparticles, ion-induced core-satellite structure formation, and ion-induced burrowing of these nanoparticles are discussed, with their individual effects on LSP excitation. Consequently, ion-induced surface nanostructuring of Ag-Au bimetallic films on amorphous silica glass and sapphire with tunable LSP excitation are presented. In addition, theoretical studies of far-field and near-field optical properties of these nanoparticles under ion irradiation are introduced, and the enhanced localized electric field (hot spot) is interpreted. Finally, the futures and challenges of the emerging plasmonic applications based on tunable LSP excitations in bio-sensing and surface enhanced Raman spectroscopy (SERS) are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call