Abstract

Vapor-deposited nanocrystalline titanium layers have been irradiated at room temperature with 350-MeV-Au ions up to 4x10;{15} Au/cm;{2}. Bombardment-induced texture changes were determined at the BESSY synchrotron light source. During off-normal irradiation, the nanocrystals undergo grain alignment and rotation up to approximately 90 degrees at the highest ion fluence. At the same time, the whole layer exhibits shear flow very similar to that observed previously in amorphous materials. Below 1x10;{15} Au/cm;{2}, a reversal of the ion incidence angle leads to a back rotation of the grains. These effects are absent or immeasurably small in coarse-grained titanium but have also been found in nanocrystalline TiN and NiO. The observations can be modeled by assuming that grain boundaries behave during ion bombardment like amorphous matter or by assuming a generation of disclination dipoles moving along grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.