Abstract
An electron plasma oscillation driven unstable by ion streaming is identified with the low-frequency mode observed in quicksilver [Computational Physics, edited by A. Tenner (World Scientific, Singapore, 1991), pp. 475–482] numerical simulations. This mode heats the electrons along the magnetic field and is ultimately stabilized by the thermal spread. A quasilinear theory determines the saturation level of the fluctuations, the ion divergence, and the ion energy and momentum spread as they exit the diode. The ion divergence is predicted to be independent of the ion mass for fixed diode voltage and scales as the product of the effective gap and the ion beam enhancement factor over Child–Langmuir current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.