Abstract

Channeling measurements using medium energy ions (e.g. 1 MeV He +) have been used to determine the positions of solute atoms which are displaced from lattice sites by the trapping of vacancies and self-interstitial atoms. In this way, some simple defect trapping configurations have been identified in fcc metals. One of these is the mixed dumbbell (created when a self-interstitial is trapped by a small solute atom), consisting of a host atom and solute atom stradding a normal lattice site. Another is the tetravacancy-solute atom complex, consisting of four nearest neighbour vacancies surrounding a solute atom displaced into the tetrahedral interstitial site. In addition, from detailed analyses of displacements into different crystallographic channels as a function of irradiation fluence and annealing temperature, the evolution of a variety of defect complexes containing self-interstitials or vacancies has been studied in Al, Cu, Ni, Fe, and Mg crystals. Information from channeling analyses will be compared with data obtained from measurements of electrical resistivity, Mössbauer effect, perturbed angular correlation, extended X-ray absorption fine structure, muon precession, positron annihilation and internal friction. The advantages of the different methods will be discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call