Abstract

Covalent organic frameworks have been recognized as promising porous materials for the radioactive iodine capture. However, most COFs often suffer from low adsorption capacity under practical conditions (typically ≥ 150 °C, ≤ 150 ppmv I2) due to the lack of strong binding sites and low affinity toward iodine, which restricts their application in industrial relevant conditions. Here, we develop a strategy of constructing highly efficient I2 nanotraps by manipulating two kinds of adsorption sites (ionic binding sites and Lewis binding sites) located at adjacent spatial positions, thereby realizing the synergistic binding toward I2. The obtained I2 nanotrap 4F-iCOF-TpBpy-I- delivers a remarkable I2 uptake capacity of 37 wt% at 150 °C and 150 ppmv of I2, which illustrate a record-high value for all COFs reported so far. This work opens a new avenue for the rational design of COF materials toward highly efficient I2 capture and related application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.