Abstract

The hypothesis was tested that chronic vasoconstriction is followed by a structural reduction in lumen diameter, measured at full dilation. An in vitro model of pressurized rat skeletal muscle arterioles was used. During a 3-day experimental period, constriction of active vessels was achieved with fetal calf serum or endothelin-1 (ET-1). Maximal dilation revealed inward remodeling from 179 ± 6.5 µm lumen diameter on day 0 to 151 ± 6.3 µm on day 3 at 75 mm Hg in vessels incubated with serum (n = 8). Similarly, ET-1 induced inward remodeling from 182 ± 5.2 to 164 ± 3.7 µm (n = 6). When constriction during organoid culture was inhibited with papaverin or verapamil, inward remodeling was fully prevented: 184 ± 6.3 to 184 ± 5.8 µm for papaverin (n = 6) and 174 ± 5.5 to 177 ± 7.4 µm for verapamil (n = 6). A chronic reduction in diameter without tone was achieved in vessels that were kept at a low pressure (2–5 mm Hg; n = 6). Here, no remodeling was found, thereby ruling out that a chronic reduction in diameter alone is sufficient for inward remodeling. These data show that a persistent active reduction in lumen diameter is followed by inward remodeling of arterioles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call