Abstract
Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive rice diseases worldwide. Therefore, in addition to breeding disease-resistant rice cultivars, it is desirable to develop effective biocontrol agents against Xoo. Here, we report that a soil bacterium Pseudomonas taiwanensis displayed strong antagonistic activity against Xoo. Using matrix-assisted laser desorption/ionization imaging mass spectrometry, we identified an iron chelator, pyoverdine, secreted by P. taiwanensis that could inhibit the growth of Xoo. Through Tn5 mutagenesis of P. taiwanensis, we showed that mutations in genes that encode components of the type VI secretion system (T6SS) as well as biosynthesis and maturation of pyoverdine resulted in reduced toxicity against Xoo. Our results indicated that T6SS is involved in the secretion of endogenous pyoverdine. Mutations in T6SS component genes affected the secretion of mature pyoverdine from the periplasmic space into the extracellular medium after pyoverdine precursor is transferred to the periplasm by the inner membrane transporter PvdE. In addition, we also showed that other export systems, i.e., the PvdRT-OpmQ and MexAB-OprM efflux systems (for which there have been previous suggestions of involvement) and the type II secretion system (T2SS), are not involved in pyoverdine secretion.
Highlights
Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive rice diseases worldwide
P. taiwanensis is a Gram-negative bacterium isolated from soil that can grow on a medium with shrimp shell powder as the sole carbon and nitrogen source[19]
In order to determine whether P. taiwanensis could control Xoo-induced leaf blight in rice after incubation in iron-limited medium, we conducted field trials using the japonica rice Tainung 67 (TN 67) and indica rice Taichung Sen 10 (TCS 10) in May and October 2015 (Fig. 1d,e)
Summary
Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive rice diseases worldwide. In addition to breeding disease-resistant rice cultivars, it is desirable to develop effective biocontrol agents against Xoo. Here, we report that a soil bacterium Pseudomonas taiwanensis displayed strong antagonistic activity against Xoo. Using matrix-assisted laser desorption/ ionization imaging mass spectrometry, we identified an iron chelator, pyoverdine, secreted by P. taiwanensis that could inhibit the growth of Xoo. Through Tn5 mutagenesis of P. taiwanensis, we showed that mutations in genes that encode components of the type VI secretion system (T6SS) as well as biosynthesis and maturation of pyoverdine resulted in reduced toxicity against Xoo. Our results indicated that T6SS is involved in the secretion of endogenous pyoverdine. We re-explored the efflux systems that might be involved in the secretion of endogenous pyoverdine, and report the antagonistic activity of entomopathogenic bacterium Pseudomonas taiwanensis[17] against rice www.nature.com/scientificreports/
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have