Abstract
Rab27a is a GTPase associated with insulin-containing secretory granules of pancreatic beta-cells. Selective reduction of Rab27a expression by RNA interference did not alter granule distribution and basal secretion but impaired exocytosis triggered by insulin secretagogues. Screening for potential effectors of the GTPase revealed that the Rab27a-binding protein Slac2c/MyRIP is associated with secretory granules of beta-cells. Attenuation of Slac2c/MyRIP expression by RNA interference did not modify basal secretion but severely impaired hormone release in response to secretagogues. Although beta-cells express Myosin-Va, a potential partner of Slac2c/MyRIP, no functional link between the two proteins could be demonstrated. In fact, overexpression of the Myosin-Va binding domain of Slac2c/MyRIP did not affect granule localization and hormone exocytosis. In contrast, overexpression of the actin-binding domain of Slac2c/MyRIP led to a potent inhibition of exocytosis without detectable alteration in granule distribution. This effect was prevented by point mutations that abolish actin binding. Taken together our data suggest that Rab27a and Slac2c/MyRIP are part of a complex mediating the interaction of secretory granules with cortical actin cytoskeleton and participate to the regulation of the final steps of insulin exocytosis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have