Abstract

Antimicrobial peptides are effector molecules of the innate immune system. To understand the function of vascular innate immunity in atherosclerosis, we investigated the role of LL-37, a cathelicidin antimicrobial peptide, in the disease process. Using real-time polymerase chain reaction, we found a 6-fold increase in human cationic antimicrobial protein 18/LL-37 transcript in human atherosclerotic lesions compared with normal arteries. Immunohistochemical analysis of atherosclerotic plaques showed that LL-37 was expressed mainly by macrophages and some endothelial cells. Western blot demonstrated existence of active LL-37 peptide and abundant proprotein in atheroma specimens. To understand the functional implication of LL-37 production in atherosclerosis, the transcription profile was assessed in endothelial cells treated with LL-37. Our data show that LL-37 induces expression of the adhesion molecule intercellular adhesion molecule-1 and the chemokine monocyte chemoattractant protein 1 in endothelial cells. Intriguingly, Chlamydia pneumoniae withstood the antimicrobial activity of LL-37 in vitro, although inflammatory response was induced on infection. LL-37 is produced in atherosclerotic lesions, where it may function as an immune modulator by activating adhesion molecule and chemokine expression, thus enhancing innate immunity in atherosclerosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.