Abstract
Cytokinesis is the final step of the cell-division cycle. In fungi, it relies on the coordination of constriction of an actomyosin contractile ring and construction of the septum at the division site. Glucan synthases synthesize glucans, which are the major components in fungal cell walls and division septa. It is known that Rho1 and Rho2 GTPases regulate glucan synthases Bgs1, Bgs4, and Ags1, and that Sbg1 and the F-BAR protein Cdc15 play roles in Bgs1 stability and delivery to the plasma membrane. Here we characterize Smi1, an intrinsically disordered protein that interacts with Bgs4 and regulates its trafficking and localization in fission yeast. Smi1 is important for septum integrity, and its absence causes severe lysis during cytokinesis. Smi1 localizes to secretory vesicles and moves together with Bgs4 toward the division site. The concentrations of the glucan synthases Bgs1 and Bgs4 and the glucanases Agn1 and Bgl2 decrease at the division site in the smi1 mutant, but Smi1 seems to be more specific to Bgs4. Mistargeting of Smi1 to mitochondria mislocalizes Bgs4 but not Bgs1. Together, our data reveal a novel regulator of glucan synthases and glucanases, Smi1, which is more important for Bgs4 trafficking, stability, and localization during cytokinesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.