Abstract

Modulation of the adrenergic activity and interfering with channels such as potassium channels may affect relaxation and contraction of the corpus cavernosum. Sildenafil is a selective phosphodiesterase-5 inhibitor, proven effective in treating erectile dysfunction. In this study, the effect of sildenafil citrate on alpha-receptors modulation and potassium channels was tested. The direct relaxant effect of sildenafil citrate was studied by measuring changes in isometric tension in isolated strips of rabbit corpus cavernosum and rat aortic ring precontracted with phenylephrine or KCl compared to that of diazoxide in the presence and absence of tetraethylammonium. The inhibitory effect of sildenafil on electrical field stimulation-induced contraction of rabbit corpus cavernosum and rat anococcygeus muscle was also studied compared to that of phentolamine. Muscle relaxant effect of sildenafil (1 x 10(-9)-1 x 10(-6) M on phenylephrine-precontracted rabbit corpus cavernosum strips was not attenuated by N(G)-nitro-L-arginine (3 x 10(-5) M). Cumulative addition of sildenafil (1 x 10(-9)-1 x 10(-6) M) and phentolamine (1 x 10(-9)-1 x 10(-6) M) to the organ bath dose-dependently inhibited electrical field stimulation-induced contraction of rabbit corpus cavernosum and rat anococcygeus muscle, with almost similar EC(50) values. Sildenafil (1 x 10(-7) M) also inhibited phenylephrine-induced contraction of rat aortic rings by 39.83+/-3.01%. In addition, tetraethylammonium (1 x 10(-3) M) significantly attenuated the muscle relaxant effect of sildenafil (1 x 10(-9)-1 x 10(-6) M) on phenylephrine-precontracted strips of rabbit corpus cavernosum. Sildenafil citrate is capable of producing cavernosal smooth muscle relaxation by an additional mechanism that may involve alpha-receptors and potassium channel opening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.