Abstract

The present study was performed to investigate the possible role of protein kinase C (PKC) in morphine tolerance at spinal levels of rats. Intrathecal injection of 10 μg of morphine induced increases in the hindpaw withdrawal latency (HWL) to noxious thermal and mechanical stimulation in rats. After intrathecal injections of 10 μg of morphine (twice a day) lasted for 5 days, the antinociceptive effects induced by intrathecal injections of morphine decreased significantly in rats. Interestingly, we found that there were significant increases in the content of PKC in the dorsal horn of the spinal cord and the dorsal root ganglion, but not in the ventral horn of the spinal cord, in rats with morphine tolerance determined by Western blot, suggesting that PKC is involved in morphine tolerance at spinal levels of rats. Furthermore, our results demonstrated that chronic intrathecal injection of the PKC inhibitor significantly inhibited the development of morphine tolerance. Moreover, we found that the maintenance of morphine tolerance was blocked by intrathecal administration of a PKC inhibitor in rats, and the inhibitory effects of the PKC inhibitor on morphine tolerance lasted for more than two days. Taken together, the present study clearly showed that PKC is involved in morphine tolerance at the spinal level of rats and that intrathecal administration of a PKC inhibitor can block the development and maintenance of morphine tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call