Abstract

The lateral habenula (LHb) plays an important role in the regulation of depression. At present, it is not clear whether GABAA receptor-mediated inhibitory transmission in the LHb is involved in Parkinson's disease (PD)-associated depression. In this study, unilateral 6-hydroxydopamine lesions of the substantia nigra in rats induced depressive-like behaviors and led to hyperactivity of LHb neurons compared to sham-operated rats, which attribute to depletion of dopamine, and decreased synthesis and release of GABA and increased release of glutamate in the LHb. Intra-LHb injection of GABAA receptor agonist muscimol produced antidepressant-like effects, while the injection of GABAA receptor antagonist picrotoxin induced or increased the expression of depressive-like behaviors in sham-operated and the lesioned rats. However, the doses producing these behavioral effects in the lesioned rats were lower than those in sham-operated rats. Intra-LHb injection of muscimol decreased the firing rate of LHb neurons and increased the medial prefrontal cortex serotonin (5-HT) release; conversely, picrotoxin increased the firing rate of the neurons and decreased 5-HT release in two groups of rats. Compared to sham-operated rats, the duration of muscimol and picrotoxin action on the firing rate of the neurons and 5-HT release was prolonged in the lesioned rats. These changes in the lesioned rats were associated with up-regulation of the expression of α1 subunit-containing GABAA receptors and reduction of GABA release in the LHb. Collectively, our findings suggest that degeneration of the nigrostriatal pathway impairs GABAA receptor-mediated inhibitory transmission in the LHb, and the transmission is important for regulating PD-associated depression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.