Abstract

Recent studies show that neuron-glial communication plays an important role in neurological diseases. Particularly, dysfunction of astroglial glutamate transporter GLT-1 has been involved in various neuropsychiatric disorders, including Parkinson's disease (PD) and depression. Our previous studies indicated hyperactivity of neurons in the lateral habenula (LHb) of hemiparkinsonian rats with depressive-like behaviors. Thus, we hypothesized that impaired expression or function of GLT-1 in the LHb might be a potential contributor to LHb hyperactivity, which consequently induces PD-related depression. In the study, unilateral lesions of the substantia nigra pars compacta (SNc) by 6-hydroxydopamine in rats induced depressive-like behaviors and resulted in neuronal hyperactivity as well as increased glutamate levels in the LHb compared to sham-lesioned rats. Intra-LHb injection of GLT-1 inhibitor WAY-213613 induced the depressive-like behaviors in both groups, but the dose producing behavioral effects in the lesioned rats was lower than that of sham-lesioned rats. In the two groups of rats, WAY-213613 increased the firing rate of LHb neurons and extracellular levels of glutamate, and these excitatory effects in the lesioned rats lasted longer than those in sham-lesioned rats. The functional changes of the GLT-1 which primarily expresses in astrocytes in the LHb may attribute to its downregulation after degeneration of the nigrostriatal pathway. Bioinformatics analysis showed that GLT-1 is correlated with various biomarkers of PD and depression risks. Collectively, our study suggests that astroglial GLT-1 in the LHb regulates the firing activity of the neurons, whereupon its downregulation and dysfunction are closely associated with PD-related depression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.